Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Front Mol Biosci ; 11: 1379631, 2024.
Article in English | MEDLINE | ID: mdl-38725870

ABSTRACT

Introduction: Discrimination between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) subtypes in non-small cell lung cancer (NSCLC) patients is a significant challenge in oncology. Lipidomics analysis provides a promising approach for this differentiation. Methods: In an accompanying paper, we explored oxPCs levels in a cohort of 200 NSCLC patients. In this research, we utilized liquid chromatography coupled with mass spectrometry (LC-MS) to analyze the lipidomics profile of matching tissue and plasma samples from 25 NSCLC patients, comprising 11 ADC and 14 SCC cases. This study builds upon our previous findings, which highlighted the elevation of oxidised phosphatidylcholines (oxPCs) in NSCLC patients. Results: We identified eight lipid biomarkers that effectively differentiate between ADC and SCC subtypes using an untargeted approach. Notably, we observed a significant increase in plasma LPA 20:4, LPA 18:1, and LPA 18:2 levels in the ADC group compared to the SCC group. Conversely, tumour PC 16:0/18:2, PC 16:0/4:0; CHO, and plasma PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC 16:0/20:4; OOH levels were significantly higher in the ADC group. Discussion: Our study is the first to report that plasma LPA levels can distinguish between ADC and SCC patients in NSCLC, suggesting a potential role for LPAs in NSCLC subtyping. This finding warrants further investigation into the mechanisms underlying these differences and their clinical implications.

2.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612418

ABSTRACT

Non-small-cell lung cancer (NSCLC) poses a challenge due to its heterogeneity, necessitating precise histopathological subtyping and prognostication for optimal treatment decision-making. Molecular markers emerge as a potential solution, overcoming the limitations of conventional methods and supporting the diagnostic-therapeutic interventions. In this study, we validated the expression of six genes (MIR205HG, KRT5, KRT6A, KRT6C, SERPINB5, and DSG3), previously identified within a 53-gene signature developed by our team, utilizing gene expression microarray technology. Real-time PCR on 140 thoroughly characterized early-stage NSCLC samples revealed substantial upregulation of all six genes in squamous cell carcinoma (SCC) compared to adenocarcinoma (ADC), regardless of clinical factors. The decision boundaries of the logistic regression model demonstrated effective separation of the relative expression levels between SCC and ADC for most genes, excluding KRT6C. Logistic regression and gradient boosting decision tree classifiers, incorporating all six validated genes, exhibited notable performance (AUC: 0.8930 and 0.8909, respectively) in distinguishing NSCLC subtypes. Nevertheless, our investigation revealed that the gene expression profiles failed to yield predictive value regarding the progression of early-stage NSCLC. Our molecular diagnostic models manifest the potential for an exhaustive molecular characterization of NSCLC, subsequently informing personalized treatment decisions and elevating the standards of clinical management and prognosis for patients.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Diagnosis, Differential , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy
3.
Sci Rep ; 14(1): 589, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182872

ABSTRACT

We investigate the full and half-shells of Pb1-xSnxTe topological crystalline insulator deposited by molecular beam epitaxy on the sidewalls of wurtzite GaAs nanowires (NWs). Due to the distinct orientation of the IV-VI shell with respect to the III-V core the lattice mismatch between both materials along the nanowire axis is less than 4%. The Pb1-xSnxTe solid solution is chosen due to the topological crystalline insulator properties above some critical concentrations of Sn (x ≥ 0.36). The IV-VI shells are grown with different compositions spanning from binary SnTe, through Pb1-xSnxTe with decreasing x value down to binary PbTe (x = 0). The samples are analysed by scanning transmission electron microscopy, which reveals the presence of (110) or (100) oriented binary PbTe and (100) Pb1-xSnxTe on the sidewalls of wurtzite GaAs NWs.

4.
Cancers (Basel) ; 15(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37509403

ABSTRACT

Biobanks are vital for high-throughput translational research, but the rapid development of novel molecular techniques, especially in omics assays, poses challenges to traditional practices and recommendations. In our study, we used biospecimens from oncological patients in Polish clinics and collaborated with the Indivumed Group. For serum/plasma samples, we monitored hemolysis, controlled RNA extraction, assessed cDNA library quality and quantity, and verified NGS raw data. Tissue samples underwent pathologic evaluation to confirm histology and determine tumor content. Molecular quality control measures included evaluating the RNA integrity number, assessing cDNA library quality and quantity, and analyzing NGS raw data. Our study yielded the creation of distinct workflows for conducting preanalytical quality control of serum/plasma and fresh-frozen tissue samples. These workflows offer customization options to suit the capabilities of different biobanking entities. In order to ensure the appropriateness of biospecimens for advanced research applications, we introduced molecular-based quality control methods that align with the demands of high-throughput assays. The novelty of proposed workflows, rooted in innovative molecular techniques, lies in the integration of these QC methods into a comprehensive schema specifically designed for high-throughput research applications.

5.
Front Mol Biosci ; 10: 1279645, 2023.
Article in English | MEDLINE | ID: mdl-38288337

ABSTRACT

Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.

6.
Materials (Basel) ; 15(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079207

ABSTRACT

The application of nano-Ag grains as antiviral and antibacterial materials is widely known since ancient times. The problem is the toxicity of the bulk or big-size grain materials. It is known that nano-sized silver grains affect human and animal cells in some medical treatments. The aim of this study is to investigate the influence of nano-Ag grains embedded in a carbonaceous matrix on cytotoxicity, genotoxicity in fibroblasts, and mutagenicity. The nanocomposite film is composed of silver nanograins embedded in a carbonaceous matrix and it was obtained via the PVD method by deposition from two separated sources of fullerenes and silver acetate powders. This method allows for the preparation of material in the form of a film or powder, in which Ag nanograins are stabilized by a carbon network. The structure and morphology of this material were studied using SEM/EDX, XRD, and Raman spectroscopy. The toxicology studies were performed for various types of the material differing in the size of Ag nanograins. Furthermore, it was found that these properties, such as cell viability, genotoxicity, and mutagenicity, depend on Ag grain size.

8.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163351

ABSTRACT

GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A2 analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension.


Subject(s)
Arachidonic Acids , Pulmonary Artery , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Arachidonic Acids/pharmacology , Humans , Ligands , Male , Pulmonary Artery/metabolism , Receptors, G-Protein-Coupled/metabolism
9.
Cancers (Basel) ; 14(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35053601

ABSTRACT

LncRNAs have arisen as new players in the world of non-coding RNA. Disrupted expression of these molecules can be tightly linked to the onset, promotion and progression of cancer. The present study estimated the usefulness of 14 lncRNAs (HAGLR, ADAMTS9-AS2, LINC00261, MCM3AP-AS1, TP53TG1, C14orf132, LINC00968, LINC00312, TP73-AS1, LOC344887, LINC00673, SOX2-OT, AFAP1-AS1, LOC730101) for early detection of non-small-cell lung cancer (NSCLC). The total RNA was isolated from paired fresh-frozen cancerous and noncancerous lung tissue from 92 NSCLC patients diagnosed with either adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC). The expression level of lncRNAs was evaluated by a quantitative real-time PCR (qPCR). Based on Ct and delta Ct values, logistic regression and gradient boosting decision tree classifiers were built. The latter is a novel, advanced machine learning algorithm with great potential in medical science. The established predictive models showed that a set of 14 lncRNAs accurately discriminates cancerous from noncancerous lung tissues (AUC value of 0.98 ± 0.01) and NSCLC subtypes (AUC value of 0.84 ± 0.09), although the expression of a few molecules was statistically insignificant (SOX2-OT, AFAP1-AS1 and LOC730101 for tumor vs. normal tissue; and TP53TG1, C14orf132, LINC00968 and LOC730101 for LUAD vs. LUSC). However for subtypes discrimination, the simplified logistic regression model based on the four variables (delta Ct AFAP1-AS1, Ct SOX2-OT, Ct LINC00261, and delta Ct LINC00673) had even stronger diagnostic potential than the original one (AUC value of 0.88 ± 0.07). Our results demonstrate that the 14 lncRNA signature can be an auxiliary tool to endorse and complement the histological diagnosis of non-small-cell lung cancer.

10.
Dalton Trans ; 50(41): 14762-14773, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34590656

ABSTRACT

The whitlockite-related materials have attracted researchers' attention because of their potential application in various fields, especially in optoelectronics. In the present work, the structure of novel whitlockite-related oxides Ca10TM0.5(VO4)7 (TM = Co, Cu) is studied at room and high temperatures, using X-ray powder diffraction. These compounds form by fractional substitution of divalent transition metal atoms into the Ca3(VO4)2 lattice. Rietveld refinements provided the structural details. The lattice parameters are a = 10.78074(6) Å, c = 37.8196(2) Å, and V = 3806.67(4) Å3 for Ca10Co0.5(VO4)7 and a = 10.78710(7) Å, c = 37.8997(3) Å, and V = 3819.23(4) Å3 for Ca10Cu0.5(VO4)7. Structure refinement results show that among the five available sites (M1-M5), the M2+ ions select the M5 site. This finding is confirmed by analysis of interatomic distances: due to the difference in size between TM and Ca ions sharing the M5 site, the M5-O distance shortens by about 5.0% for Ca10Co0.5(VO4)7 and 2.7% for Ca10Cu0.5(VO4)7 with respect to the unsubstituted parent compound, Ca3(VO4)2. The observed trends in the crystallographic properties of the studied crystals are in line with those of previously reported structurally related phosphates, Ca10.5-xMx(PO4)7 (M = Mg or divalent transition metal). Moreover, the observed tendency for occupation of M5 by small divalent ions follows the earlier theoretical results. For cobalt and copper substituted orthovanadate and orthophosphate whitlockite related materials, a linear variation in the unit cell size is demonstrated. The common equation for evaluation of volume is applicable to the substitution of the two transition metals in orthovanadate and orthophosphate whitlockite related materials. Thermal expansion is investigated for both compounds. The variations of the lattice parameters and the thermal expansion coefficient with temperature are determined in the 300-810 K range. The lattice parameter, a, expands by 0.80% for Ca10Co0.5(VO4)7 and 0.74% for Ca10Cu0.5(VO4)7 in this range. The lattice parameter, c, enlarges by about 0.70% for both samples. In the studied temperature range, the volume thermal expansion coefficient of Ca10Co0.5(VO4)7 increases from 37.2 to 44.8 MK-1 and for Ca10Cu0.5(VO4)7, it increases from 35.1 to 45.2 MK-1; the observed expansion anisotropy is smaller than those of other related compounds.

11.
Cancers (Basel) ; 13(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34282765

ABSTRACT

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.

12.
Anticancer Res ; 40(7): 3857-3863, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32620625

ABSTRACT

BACKGROUND: The aim of this study was to define the alterations in the activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in normal and cancerous lung cells. MATERIALS AND METHODS: Lung tissues were taken from 36 patients during surgical resection of cancer. The activities of tested enzymes were measured by spectrofluorometric method (ADH I, ADH II, total ALDH) and photometric method (ADH III, ADH IV, total ADH). RESULTS: The activities of class II and III ADH were significantly lower in lung cancer cells compared to histologically normal lung tissue. CONCLUSION: Reduced activity of isoenzyme class II ADH may affect disorders in retinoic acid biosynthesis, leading to its deficit. Lower ADH III activity may result in depletion of glutathione, and in initiation of oxidative stress, leading to cancer progression. These data suggest that alterations in ADH isoenzyme activities can contribute to carcinogenesis in human lungs.


Subject(s)
Alcohol Dehydrogenase/metabolism , Aldehyde Dehydrogenase/metabolism , Lung Neoplasms/enzymology , Adenocarcinoma of Lung/enzymology , Carcinoma, Squamous Cell/enzymology , Female , Humans , Isoenzymes/metabolism , Male , Sex Factors
13.
Nat Biotechnol ; 38(8): 947-953, 2020 08.
Article in English | MEDLINE | ID: mdl-32361713

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has shown promise in hematologic malignancies, but its application to solid tumors has been challenging1-4. Given the unique effector functions of macrophages and their capacity to penetrate tumors5, we genetically engineered human macrophages with CARs to direct their phagocytic activity against tumors. We found that a chimeric adenoviral vector overcame the inherent resistance of primary human macrophages to genetic manipulation and imparted a sustained pro-inflammatory (M1) phenotype. CAR macrophages (CAR-Ms) demonstrated antigen-specific phagocytosis and tumor clearance in vitro. In two solid tumor xenograft mouse models, a single infusion of human CAR-Ms decreased tumor burden and prolonged overall survival. Characterization of CAR-M activity showed that CAR-Ms expressed pro-inflammatory cytokines and chemokines, converted bystander M2 macrophages to M1, upregulated antigen presentation machinery, recruited and presented antigen to T cells and resisted the effects of immunosuppressive cytokines. In humanized mouse models, CAR-Ms were further shown to induce a pro-inflammatory tumor microenvironment and boost anti-tumor T cell activity.


Subject(s)
Immunotherapy, Adoptive , Macrophages/physiology , Neoplasms/therapy , Animals , Cell Line, Tumor , Cell Survival , Humans , Immunotherapy , Lung Neoplasms/therapy , Mice , Microscopy, Video , Neoplasms, Experimental
14.
Pharmacol Rep ; 72(3): 756-762, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32333296

ABSTRACT

BACKGROUND: LY393558 is a combined antagonist of serotonin (5-HT) 5-HT1B receptors and inhibitor of serotonin transporter (SERT). LY393558 reduces 5-HT-induced vasoconstriction and remodelling of rat and/or mouse pulmonary arteries. The aim of our study was to examine the effect of LY393558 on the 5-HT-stimulated vasoconstriction of human pulmonary arteries (hPAs) and to determine the underlying mechanism(s). METHODS: Vascular effects of 5-HT receptor agonists, antagonists and a SERT inhibitor were examined in organ bath studies on intralobar hPAs obtained from patients during resection of lung carcinoma. RESULTS: Serotonin and agonists of the 5-HT1B receptor (5-carboxamidotryptamine, 5-CT) and 5-HT2A receptor (α-methyl-5-HT) contracted endothelium-intact hPAs in a concentration-dependent fashion. The 5-HT1B antagonists SB224289 and GR55562 reduced responses induced by 5-HT and 5-CT and the 5-HT2A antagonist ketanserin inhibited the effects of 5-HT and α-methyl-5-HT. Administration of the SERT inhibitor citalopram (at a concentration that failed to modify the 5-HT-induced vasoconstriction) in combination with SB224289 or GR55562 was more effective in inhibiting the response to 5-HT than the 5-HT1B antagonists alone. LY393558 showed the greatest antagonistic effect against the vasoconstriction elicited by 5-HT, 5-CT and α-methyl-5-HT. CONCLUSIONS: LY393558 reduces the 5-HT-induced contraction antagonizing 5-HT1B and 5-HT2A receptors probably due to synergic interaction between SERT inhibition and 5-HT1B receptor antagonism. Thus, it might represent a valuable future option in the pulmonary arterial hypertension therapy.


Subject(s)
Cyclic S-Oxides/pharmacology , Pulmonary Artery/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists , Thiadiazines/pharmacology , Vasoconstriction/drug effects , Aged , Benzamides/pharmacology , Citalopram/pharmacology , Female , Humans , Male , Middle Aged , Piperidones/pharmacology , Pyridines/pharmacology , Receptor, Serotonin, 5-HT1B , Receptor, Serotonin, 5-HT2A , Spiro Compounds/pharmacology
15.
J Hypertens ; 38(5): 896-911, 2020 05.
Article in English | MEDLINE | ID: mdl-31800399

ABSTRACT

OBJECTIVE: Cannabidiol (CBD) has been suggested as a potential antihypertensive drug. The aim of our study was to investigate its vasodilatory effect in isolated human pulmonary arteries (hPAs) and rat small mesenteric arteries (sMAs). METHODS: Vascular effects of CBD were examined in hPAs obtained from patients during resection of lung carcinoma and sMAs isolated from spontaneously hypertensive (SHR); 11-deoxycorticosterone acetate (DOCA-salt) hypertensive rats or their appropriate normotensive controls using organ bath and wire myography, respectively. RESULTS: CBD induced almost full concentration-dependent vasorelaxation in hPAs and rat sMAs. In hPAs, it was insensitive to antagonists of CB1 (AM251) and CB2 (AM630) receptors but it was reduced by endothelium denudation, cyclooxygenase inhibitors (indomethacin and nimesulide), antagonists of prostanoid EP4 (L161982), IP (Cay10441), vanilloid TRPV1 (capsazepine) receptors and was less potent under KCl-induced tone and calcium-activated potassium channel (KCa) inhibitors (iberiotoxin, UCL1684 and TRAM-34) and in hypertensive, overweight and hypercholesteremic patients. The time-dependent effect of CBD was sensitive to the PPARγ receptor antagonist GW9662. In rats, the CBD potency was enhanced in DOCA-salt and attenuated in SHR. The CBD-induced relaxation was inhibited in SHR and DOCA-salt by AM251 and only in DOCA-salt by AM630 and endothelium denudation. CONCLUSION: The CBD-induced relaxation in hPAs that was reduced in hypertensive, obese and hypercholesteremic patients was endothelium-dependent and mediated via KCa and IP, EP4, TRPV1 receptors. The CBD effect in rats was CB1-sensitive and dependent on the hypertension model. Thus, modification of CBD-mediated responses in disease should be considered when CBD is used for therapeutic purposes.


Subject(s)
Antihypertensive Agents/pharmacology , Cannabidiol/pharmacology , Mesenteric Arteries/drug effects , Pulmonary Artery/drug effects , Vasodilation/drug effects , Aged , Animals , Blood Pressure/drug effects , Desoxycorticosterone Acetate , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Female , Humans , Hypertension/chemically induced , Male , Middle Aged , Rats , Rats, Inbred SHR
16.
Blood ; 135(7): 505-509, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31703119

ABSTRACT

Unintentional transduction of B-cell acute lymphoblastic leukemia blasts during CART19 manufacturing can lead to CAR19+ leukemic cells (CARB19) that are resistant to CART19 killing. We developed an anti-CAR19 idiotype chimeric antigen receptor (αCAR19) to specifically recognize CAR19+ cells. αCAR19 CAR T cells efficiently lysed CARB19 cells in vitro and in a primary leukemia-derived xenograft model. We further showed that αCAR19-CART cells could be used as an "antidote" to deplete CART19 cells to reduce long-term side effects, such as B-cell aplasia.


Subject(s)
Antigens, CD19/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cytotoxicity, Immunologic , Humans , Immunotherapy, Adoptive , Mice
17.
Clin Exp Med ; 19(2): 191-199, 2019 May.
Article in English | MEDLINE | ID: mdl-30820705

ABSTRACT

C-X-C motif chemokine 8 (CXCL-8), known as interleukin-8, is a pro-inflammatory cytokine which acts as a chemotactic factor, mainly for leukocytes. CXCL-8 is produced by malignant cells, and therefore it can stimulate the growth and progression of various neoplasms, including oesophageal cancer (OC). The aim of the current study was to measure serum concentrations of chemokine CXCL-8 in OC patients and establish whether this protein might be considered a potential candidate for a tumor marker in the diagnosis and progression of OC. The study included 50 OC subjects (32 patients with squamous cell carcinoma of oesophagus-OSCC, 18 patients with adenocarcinoma-OAC) and 26 healthy volunteers. Serum CXCL-8 concentrations were measured using immunoenzymatic assay (ELISA). CRP levels were determined by immunoturbidimetric method, while classical tumor marker levels were measured using chemiluminescent immunoassay. CXCL-8 concentrations were significantly higher in OC patients compared to healthy controls. We demonstrated significant differences between CXCL-8 concentrations and depth of tumor invasion (T factor) in OC patients and OSCC subgroup. In addition, CXCL-8 levels were found to correlate positively with T factor and CRP concentrations. The diagnostic sensitivity, negative predictive value and the area under ROC curve (AUC) of CXCL-8 were higher than those of classical tumor markers. Our findings suggest the potential usefulness of CXCL-8 in the diagnosis and progression of OC. However, due to the non-specific nature of this chemokine, further research is needed to clarify the usefulness of CXCL-8 as a tumor marker of OC.


Subject(s)
Adenocarcinoma/diagnosis , Biomarkers, Tumor/blood , Carcinoma, Squamous Cell/diagnosis , Diagnostic Tests, Routine/methods , Esophageal Neoplasms/diagnosis , Interleukin-8/blood , Serum/chemistry , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , Female , Humans , Immunoassay/methods , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Sensitivity and Specificity
18.
Nat Commun ; 9(1): 4782, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429477

ABSTRACT

Incomplete understanding of the metastatic process hinders personalized therapy. Here we report the most comprehensive whole-genome study of colorectal metastases vs. matched primary tumors. 65% of somatic mutations originate from a common progenitor, with 15% being tumor- and 19% metastasis-specific, implicating a higher mutation rate in metastases. Tumor- and metastasis-specific mutations harbor elevated levels of BRCAness. We confirm multistage progression with new components ARHGEF7/ARHGEF33. Recurrently mutated non-coding elements include ncRNAs RP11-594N15.3, AC010091, SNHG14, 3' UTRs of FOXP2, DACH2, TRPM3, XKR4, ANO5, CBL, CBLB, the latter four potentially dual protagonists in metastasis and efferocytosis-/PD-L1 mediated immunosuppression. Actionable metastasis-specific lesions include FAT1, FGF1, BRCA2, KDR, and AKT2-, AKT3-, and PDGFRA-3' UTRs. Metastasis specific mutations are enriched in PI3K-Akt signaling, cell adhesion, ECM and hepatic stellate activation genes, suggesting genetic programs for site-specific colonization. Our results put forward hypotheses on tumor and metastasis evolution, and evidence for metastasis-specific events relevant for personalized therapy.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Liver Neoplasms/genetics , Precision Medicine , 3' Untranslated Regions/genetics , Adaptor Proteins, Signal Transducing/genetics , Adenocarcinoma/secondary , Aged , Anoctamins/genetics , Apoptosis Regulatory Proteins , BRCA2 Protein/genetics , Cell Adhesion/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , DNA-Binding Proteins , Extracellular Matrix/genetics , Female , Forkhead Transcription Factors/genetics , Hepatic Stellate Cells/metabolism , Humans , Liver Neoplasms/secondary , Male , Membrane Proteins , Membrane Transport Proteins/genetics , Middle Aged , Neoplasm Metastasis , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-cbl/genetics , RNA, Untranslated , Receptor, Platelet-Derived Growth Factor alpha/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , TRPM Cation Channels/genetics , Transcription Factors/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Whole Genome Sequencing
19.
Cell ; 173(6): 1439-1453.e19, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29856956

ABSTRACT

The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.


Subject(s)
Hematopoietic Stem Cells/cytology , Immunotherapy/methods , Leukemia, Myeloid, Acute/therapy , RNA, Guide, Kinetoplastida/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Electroporation , Female , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/immunology , Macaca mulatta , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Transplantation , Reactive Oxygen Species , T-Lymphocytes/cytology
20.
Oncol Lett ; 15(5): 6752-6762, 2018 May.
Article in English | MEDLINE | ID: mdl-29849784

ABSTRACT

The present study aimed to verify a possibility of ongoing lymphangiogenesis in non-small cell lung cancer (NSCLC) via examination of mRNA levels of a number of lymphangiogenesis-associated genes in tumors. It was hypothesized that transcriptional activation of these genes would occur in tumors that stimulate new lymphatic vessel formation. The study was performed on 140 pairs of fresh-frozen surgical specimens of cancer and unaffected lung tissues derived from NSCLC stage I-IIIA patients. mRNA levels were evaluated with the reverse transcription-quantitative polymerase chain reaction method and expressed as fold change differences between the tumor and normal tissues. Possible associations between expression and patient clinicopathological characteristics and survival were analyzed. In the NSCLC tissue samples, vascular endothelial growth factor (VEGF) C, VEGFD, VEGFR3, VEGFR2, VEGFR1, lymphatic vessel endothelial hyaluronan receptor 1, integrin subunit α 9, FOX2, neuropilin 2, fibroblast growth factor 2 genes were significantly downregulated (P<0.001 for all) compared with matched normal lung tissues, whereas mRNA levels for VEGFA, spleen associated tyrosine kinase, podoplanin, and prospero homeobox 1 genes were similar in both tissues. Neither lymph node status, nor disease pathological stage influenced expression, whereas more profound suppression of gene activities appeared to occur in squamous cell carcinomas compared with adenocarcinomas. The VEGFR1 mRNA expression level was significantly connected with patient survival in the univariate analysis, and was an independent prognostic factor for overall survival in the multivariate Cox's proportional hazards model (HR 2.103; 95% confidence interval: 1.005-4.401; P=0.049). The results support a hypothesis of absence of new lymphatic vessel formation inside growing NSCLC tumor mass, however do not exclude a possibility of lymphangiogenesis in narrow marginal tumor parts.

SELECTION OF CITATIONS
SEARCH DETAIL
...